Linking community size structure and ecosystem functioning using metabolic theory.
نویسندگان
چکیده
Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change.
منابع مشابه
The metabolic theory of ecology: prospects and challenges for plant biology.
The metabolic theory of ecology (MTE) as applied to the plant sciences aims to provide a general synthesis for the structure and functioning of plants from organelles to ecosystems. MTE builds from simple assumptions of individual metabolism to make predictions about phenomena across a wide range of scales, from individual plant structure and function to community dynamics and global nutrient c...
متن کاملEcosystem ecology: size-based constraints on the pyramids of life.
Biomass distribution and energy flow in ecosystems are traditionally described with trophic pyramids, and increasingly with size spectra, particularly in aquatic ecosystems. Here, we show that these methods are equivalent and interchangeable representations of the same information. Although pyramids are visually intuitive, explicitly linking them to size spectra connects pyramids to metabolic a...
متن کاملLinking biodiversity and ecosystems: towards a unifying ecological theory
Community ecology and ecosystem ecology provide two perspectives on complex ecological systems that have largely complementary strengths and weaknesses. Merging the two perspectives is necessary both to ensure continued scientific progress and to provide society with the scientific means to face growing environmental challenges. Recent research on biodiversity and ecosystem functioning has cont...
متن کاملWarming alters community size structure and ecosystem functioning.
Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic com...
متن کاملLinking changes in community composition and function under climate change.
Climate change is expected to directly alter the composition of communities and the functioning of ecosystems across the globe. Improving our understanding of links between biodiversity and ecosystem functioning across large spatial scales and rapid global change is a major priority to help identify management responses that will retain diverse, functioning systems. Here we address this challen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 367 1605 شماره
صفحات -
تاریخ انتشار 2012